Chapter 1

The IMS DC System

Get on the Fast Track!

SYS-ED /
COMPUTER
EDUCATION
TECHNIQUES, INC.
Objectives

You will learn:

C IMS software.
C IMS data communications facilities.
C ACB - Application Control Blocks.
C IMS DC system.
C Two types of DC application programs.
C Message Processing vs Batch Message Processing.
C IMS DC Control Program.
C IMS Master Terminal.
C Message queues.
C Transaction codes.
C IMS logging/restart.
C Program isolation.
C Conversational processing.
C Security.
1 IMS Software

DB

DC

MFS
2 IMS Batch System Overview
3 IMS Batch System

The characteristics of an IMS batch system are:

C Each application program executes in its own control region.

C Each control region contains its own copy of dl/l modules.

C Each application program execution requires a distinct and separate log.

C IMS data bases are not shared.

C An application program can access os data sets.

C Block building may take place.

C A job is started with JCL.
IMS Batch JCL

```
//JOB
//JOBLIB DD DSN = IMSVS.PGMLIB, DISP = SHR
//EXEC PGM = DFSRRC00, REGION = 256K,
//PARM = 'DLI, APPL1, PSBA'
//IMS DD DSN = IMSVS.PSBLIB, DISP = SHR
//    DD DSN = IMSVS.DBDLIB, DISP = SHR

Own control region.

//PARM = 'DBB, APPL1, ACBA'
//IMS DD DSN = IMSVS.ACBLIB, DISP = SHR
//IEFRDER LOG TAPE > OWN LOG TAPE
//DFSVAMP VSAM BUFFERS
// DATA BASENAMES
// OS DATA SETS

No block building.

OR

Block building.
```
5 IMS Data Communications Feature
6 ACB Application Control Blocks

ACB generation builds control blocks from the PSB and its associated DBD's. Output of ACB generation is pre-assembled control blocks, ready to be loaded into memory. ACB is required for online execution.
7 IMS DC System Overview
The characteristics of an IMS DC system are:

- Two types of application programs can be processed.
- Application programs can talk to terminals as well as databases.
- Application programs execute in dependent regions.
- There is one copy of DL/1 modules.
- There is one log tape for the entire DC system.
- IMS databases are shared.
- An ACB control block must be generated.
9 Two Types of DC Application Programs

The message processing program:

- Is scheduled by IMS.
- Cannot be used by operating system datasets.

The batch message processing program is started with JCL and can access operating system data sets.
10 IMS BMP JCL

// JOB ACCOUNT INFO
// JOBLIB DD DSN= IMSVS. PGMLIB, DISP=SHR
// EXEC PGM=DFSRRCOO,)))))))> ONE CONTROL REGION
// PARM=`BMP, APPL1, ACBA' OR
// PARM=`BMP, APPL1')))))))> ACB AND APPLICATION PROGRAM HAVE THE SAME NAME

NO LOG TAPE SPECIFIED
NO VSAM BUFFERS SPECIFIED
NO DATA BASES SPECIFIED

// OS DATA SETS
Comparison of Message Processing and Batch Message Processing

<table>
<thead>
<tr>
<th></th>
<th>MPP</th>
<th>BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access online database</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Use online log</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>DL/1 resides in CTL register</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Access Message Queues</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Scheduled via</td>
<td>IMS</td>
<td>JCL</td>
</tr>
<tr>
<td>Access OS data sets</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
The characteristics of an IMS DC Control program function are:

- Interfaces with terminal devices.
- Message queuing.
- Message scheduling.
- Logging / restart.
13 IMS DC Control Program Overview
14 **IMS Telecommunications Module**

- Removes all devices and line control characters from input transactions.
- Replaces physical terminal identifier with a logical terminal name.
- Replaces all device and line control characters on output transactions.

![Diagram of IMS Telecommunications Module](image-url)
15 Terminals

Physical vs. Logical Terminal

Every physical terminal is assigned a logical terminal name in an IMS system definition.

An application program deals with logical terminal. Terminal independence is associated with device type and device address which are transparent to the program.

In case of hardware failure, logical terminal can be reassigned to a different physical terminal.
16 LTERM Table

<table>
<thead>
<tr>
<th>PHYSICAL</th>
<th>LOGICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LTERMA</td>
</tr>
<tr>
<td>B</td>
<td>LTERMB</td>
</tr>
<tr>
<td>C</td>
<td>LTERMC</td>
</tr>
<tr>
<td>D</td>
<td>LTERMD</td>
</tr>
<tr>
<td></td>
<td>LTERME</td>
</tr>
<tr>
<td></td>
<td>LTERMF</td>
</tr>
</tbody>
</table>

- ASSIGNED DURING SYSTEM DEFINITION
- ASSIGNMENT CAN BE CHANGED DYNAMICALLY
- TERMINAL INDEPENDENCE
IMS supports a variety of terminal types:

- Printer-keyboard terminals.
- Display-keyboard terminals.
- Printers.
- Batch data entry devices.
- Intelligent controllers.
- Data transmission terminals.

Lines:
- Non-switched
- Switched

Terminal access methods:
- BTAM
- VTAM
IMS TERMINAL SUPPORT

<table>
<thead>
<tr>
<th>VIDEO</th>
<th>COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3270 LOCAL</td>
<td>SYSTEM/3</td>
</tr>
<tr>
<td>3270 REMOTE</td>
<td>SYSTEM/7</td>
</tr>
<tr>
<td>2260 LOCAL</td>
<td>SYSTEM/34</td>
</tr>
<tr>
<td>2260 REMOTE</td>
<td>SPECIAL</td>
</tr>
<tr>
<td>2265 REMOTE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEWRITER</th>
<th>CARD READER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2740</td>
<td>SYSOUT</td>
</tr>
<tr>
<td>2741</td>
<td>3741</td>
</tr>
<tr>
<td>MAG CARD</td>
<td></td>
</tr>
<tr>
<td>3767</td>
<td>INDUSTRY ORIENTED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>2980</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>33/35</td>
</tr>
<tr>
<td>2770</td>
<td>7770 AUDIO</td>
</tr>
<tr>
<td>2780</td>
<td>3600</td>
</tr>
<tr>
<td>3770</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROGRAMMABLE</th>
<th>3790</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3600</td>
</tr>
</tbody>
</table>
The IMS Master Terminal:

C Is a logical terminal defined to IMS system as its control center.
C Can issue all IMS commands.
C Monitors and take status of the IMS system.
C Can dynamically change resources which were previously defined at system definition.

Examples:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY (TERMINAL) /DIS</td>
<td>Displays the status of IMS message queues and resources.</td>
</tr>
<tr>
<td>/START (DATABASE) /STA</td>
<td>Starts resources and makes them available to IMS.</td>
</tr>
<tr>
<td>/ASSIGN (CLASS) TO (REGION) /ASS</td>
<td>Changes the relationships between IMS resources that were defined during system definition.</td>
</tr>
</tbody>
</table>
19 Message Queues

A message queue is the main storage or secondary storage area where messages are queued prior to being processed by an application program (input) or sent to a terminal (output).

Input Queues

<table>
<thead>
<tr>
<th>TRANSDE 1</th>
<th>TRANSDE 2</th>
<th>TRANSDE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>.)))))))</td>
<td>.)))))))</td>
<td>.)))))))</td>
</tr>
</tbody>
</table>

BASED ON TRANSACTION,
ONE QUEUE PER TRANSACTION CODE

Output Queues

<table>
<thead>
<tr>
<th>LTERMA</th>
<th>LTERMB</th>
<th>LTERMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.)))))))</td>
<td>.)))))))</td>
<td>.)))))))</td>
</tr>
</tbody>
</table>

BASED ON LOGICAL TERMINAL,
ONE QUEUE PER LOGICAL TERMINAL

Transactions for BMP programs remain in message queues until JCL is submitted and the program is started.
20 A Message

A message is a string of data routed through the IMS telecommunications environment.

There are several message types:

IMS commands

```
+))))))))))))))))))))))))))))))))))))))))
* /COMMAND b KEYWORD b PARAMETERS *
.))))))))))))))))))))))))))))))))))))))-
```

Transactions

```
+))))))))))))))))))))))))))))))))))))))
* TRANSACTION CODE b USER DATA *
.))))))))))))))))))))))))))))))))))))-
```

1 - 8 BYTES

Message Switch (Terminal-to-Terminal)

```
+))))))))))))))))))))))))))))))))))))))
* LTERM NAME b MESSAGE TEXT *
.))))))))))))))))))))))))))))))))))-
```

1 - 8 BYTES
Message Queuing Flow

- TRANSACTION
- RESPONSE

MESSAGE QUEUING MODULE

INPUT MESSAGE QUEUE

OUTPUT MESSAGE QUEUE

TRANSACTION CODE

<table>
<thead>
<tr>
<th>TRANSACTION CODE</th>
<th>PSB/PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNKTRN 1</td>
<td>BANKER</td>
</tr>
<tr>
<td>BNKTRN 2</td>
<td></td>
</tr>
<tr>
<td>TELLER</td>
<td>TELLER</td>
</tr>
</tbody>
</table>

LTERM

<table>
<thead>
<tr>
<th>LTERM</th>
<th>PHYSICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM A</td>
<td>PRINT 123</td>
</tr>
<tr>
<td>LTERM B</td>
<td></td>
</tr>
<tr>
<td>LTERM C</td>
<td>TERM 142</td>
</tr>
</tbody>
</table>
22 Message Scheduling

Transactions

Priority (0-14)

Message class (1-255)

A transaction is established at system definition:

/TRANSACT CODE='BANKTRN',PRTY=(3,7,20), MSGTYPE=(,10)

Region

CLASS (UP TO 4)

A region is established at system definition and defines which message region will process which transactions.

When a region becomes available, IMS schedules the first transaction in the queue with the highest priority within the selected class.
23 Message Scheduling Flow

MESSAGE SCHEDULE

```
  ▲
```

<table>
<thead>
<tr>
<th>CLASS</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANS</td>
<td>A</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>BY</td>
<td>B</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

REGION

<table>
<thead>
<tr>
<th>REGION</th>
<th>CLASS</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
24 Transaction Code

A transaction code:

C Tells IMS what program should be executed.
C Is related to program / PSB.
C is established at system definition.

APPLCTN MACRO

C Tells IMS the PSB name and program type.
C For MPP programs PSB is program name.
C For BMP Programs PSB may or may not be the same as the program name.

TRANSACT MACRO

C Tells IMS the transaction mode related to program / psb.

Example:

/APPLCTN PSB=BANKER, PGMTYPE=TP
/TRANSACT CODE=BANKTRN

BANKTRN <))))))))))) RELATED
BANKER
Transaction Code Rule

A program may be related to many transaction codes.

A transaction code may be related to only one program.
26 Transaction Selection Priorities

Transaction selection priorities is the Message scheduler's means of preventing message queue buildup.

<table>
<thead>
<tr>
<th>PRIORITY</th>
<th>HIGHEST 1</th>
<th>CLASS 2</th>
<th>LOWEST 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Transaction:

- normal priority
- limit count
- limit priority

(Defined at system generation)

/TRANSACT PRTY=(3,7,20)

<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue count</td>
<td>15</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Normal priority</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Limit count</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Limit priority</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Current priority</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
27 Parallel Processing

Parallel processing is when an application program is allowed to execute in multiple regions simultaneously. It is defined at system definition.

Examples:

Transactions are on the input message queue in this order:

PROGRAM A
PROGRAM A
PROGRAM B

//APPLCTN=, SCHDTYPE=PARALLEL

WAIT (PROGRAM B)

<table>
<thead>
<tr>
<th>MESSAGE REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM A</td>
</tr>
<tr>
<td>PROGRAM A</td>
</tr>
</tbody>
</table>

/APPLCTN=, SCHDTYP=SERIAL

WAIT (PROGRAM A)

<table>
<thead>
<tr>
<th>MESSAGE REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM A</td>
</tr>
<tr>
<td>PROGRAM B</td>
</tr>
</tbody>
</table>
28 IMS Logging/Restart

IMS logging/restart:

C Logs transactions from the terminal.
C Logs application program responses.
C Dynamic backout of transaction and system restart for IMS system failures.
C Dynamic backout of transaction for program abend.
29 Program Isolation

Program isolation is needed because in a DC environment databases are shared:

C Three types of database accesses are defined in PSBGEN:

- **READ ONLY** (1) **PROCOPT = G**
- **SINGLE UPDATE** (2) **PROCOPT = GIRD OR A**
- **EXCLUSIVE UPDATE** (3) **PROCOPT = E**

Each type is assigned a number by IMS. When a call is issued against a segment, currently being used, IMS will add up the number for each access.

If the sum is ≥ 4 the issued access is suspended.

- **DEADLOCK CAN OCCUR**

 ![Diagram](https://via.placeholder.com/150)

 - A WANTS TO READ B AND
 - B WANTS TO READ A

IMS abends one program, then automatically restarts it.
30 Conversational Processing

A transaction defined in system generation can be conversational or non-conversational.

Non-conversational

One input, one response per transaction.

Conversational

Multiple interactions between user and online system for one transaction.

1. User enters input request.
2. System sends response, but requires additional input data.
3. User sends more input data.
4. System sends final response. (Steps 2 and 3 can be repeated multiple times).
An application program does not remain in the region for an entire conversation.

A program is loaded into the message region for each receipt of input data.

How does processing know which iteration it is processing?

SPA -- Scratch Pad Area

- Defined in IMS system generation.
- Related to transaction.
- One SPA per logical terminal.
31 Alternatives to SPA

Maintaining data on the terminal:

C Requires constant transmission of data.
C Data is lost if screen is cleared.
C Not a bad approach when data is minimal and not critical.
C Recommend dark intensity: e.g. non-display.

A temporary database:

C Requires maintenance with the database.
C May complicate the program.
There are two ways for terminating a conversation:

By program:
 Blanks in the SPA

By user:
 /EXIT command
 /HOLD command
Response Mode

Specifies that no further messages are to be entered until the previously entered transaction sends a response message back to the terminal.

- Terminal will remain locked if application program abends.
- /STA parameters, issued from MTO will unlock the terminal.
Non Response Mode

Specifies that no cessation of input should occur after a transaction is entered.

A user could flood the system
user may lose track of what was sent.

Modes are defined at system definition.

/TRANSACT MSGTYPE= (, NO RESPONSE) RESPONSE
34 Security

Defined via security maintenance program.

Terminal Security

Only designated transactions may be entered at a logical terminal.

Password Security

Pre-defined password (1-8 bytes) must accompany transaction code.

TRAN1 (BJL) DATA

User Verification

Associates the user with the physical terminal. Only valid users may access the IMS online system.

/SIGN ON BJL123